Pose detection using accelerometers.
{
vector<double> result(3);
for (int i = 0; i < 3; i++) {
}
return result;
}
double zG = (data.getMean()[0] + data.getMean()[1]) / 2;
double oG = data.getMean()[2];
double r = abs(oG - zG);
vector<double>
stddev = data.getStdDev();
if (stddev[0] / r > 0.05 ||
stddev[1] / r > 0.05 ||
stddev[2] / r > 0.05)
"Accelerometer seemed to be moving; consider recollecting the "
"calibration sample.");
if (abs(data.getMean()[0] - data.getMean()[1]) / r > 0.1)
"X and Y axes differ by " + std::to_string(
abs(data.getMean()[0] - data.getMean()[1]) / r * 100) +
" percent. Check that accelerometer is flat.");
for (int i = 0; i < 3; i++) {
}
}
return result;
}
{
}
{
}
pipeline.getClassifier()->enableNullRejection(!new_val);
}
pipeline.getClassifier()->setNullRejectionCoeff(new_val);
pipeline.getClassifier()->recomputeNullRejectionThresholds();
}
{
pipeline.addFeatureExtractionModule(TimeDomainFeatures(10, 1, 3,
false,
true,
true,
false,
false));
pipeline.setClassifier(ANBC(
false, !always_pick_something, null_rej));
"Whether to always pick (predict) one of the classes of training data, "
"even if it's not a very good match. If selected, 'Variability' will "
"How different from the training data a new gesture can be and "
"still be considered the same gesture. The higher the number, the more "
}